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Abstract

Fragment libraries are often used in protein struc-
ture prediction, simulation and design as a means
to significantly reduce the vast conformational
search space. Current state-of-the-art methods
for fragment library generation do not properly
account for aleatory and epistemic uncertainty,
respectively due to the dynamic nature of pro-
teins and experimental errors in protein structures.
Additionally, they typically rely on information
that is not generally or readily available, such as
homologous sequences, related protein structures
and other complementary information. To address
these issues, we developed BIFROST, a novel take
on the fragment library problem based on a Deep
Markov Model architecture combined with direc-
tional statistics for angular degrees of freedom,
implemented in the deep probabilistic program-
ming language Pyro. BIFROST is a probabilistic,
generative model of the protein backbone dihe-
dral angles conditioned solely on the amino acid
sequence. BIFROST generates fragment libraries
with a quality on par with current state-of-the-art
methods at a fraction of the run-time, while requir-
ing considerably less information and allowing
efficient evaluation of probabilities.

1. Introduction
Fragment libraries (Jones & Thirup, 1986) find wide appli-
cation in protein structure prediction, simulation, design and
experimental determination (Trevizani et al., 2017; Chikenji
et al., 2006; Boomsma et al., 2012). Predicting the fold of
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a protein requires evaluating a conformational space that is
too vast for brute-force sampling to be feasible (Levinthal,
1969). Fragment libraries are used in a divide-and-conquer
approach, whereby a full length protein is divided into a
manageable sub-set of shorter stretches of amino acids for
which backbone conformations are sampled. Typically, sam-
pling is done using a finite set of fragments derived from
experimentally determined protein structures. Fragment
libraries are used in state-of-the-art protein structure pre-
diction frameworks such as Rosetta (Rohl et al., 2004), I-
TASSER (Roy et al., 2010), and AlphaFold (Senior et al.,
2019).

Generally, knowledge-based methods for protein struc-
ture prediction follow two main strategies: homology (or
template-based) modelling (Eswar et al., 2006; Šali & Blun-
dell, 1993; Song et al., 2013) and de novo modelling (Rohl
et al., 2004). Both approaches assume that the native fold of
a protein corresponds to the minimum of a physical energy
function and make use of statistics derived from a database
of known proteins structures (Alford et al., 2017; Leaver-
Fay et al., 2013). Whereas homology modelling relies on
the availability of similar structures to limit the search space,
knowledge-based de novo protocols require extensive sam-
pling of the conformational space of backbone angles (figure
1).
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Figure 1. Schematic of the three dihedral angles (φ, ψ, and ω) that
parameterise the protein backbone. R represents the side chain.

To overcome the shortcomings of either strategy, modelling
tools like Rosetta (Rohl et al., 2004) use a combined ap-
proach of extensive sampling and prior information. Rosetta
employs simulated annealing of backbone conformations
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according to an energy function (Alford et al., 2017), while
reducing the conformational space by sampling fragments
of typically 3 or 9 amino acids at a time (Simons et al.,
1997).

Fragments are typically extracted from experimentally deter-
mined protein structures in the Protein Data Bank (Berman
et al., 2000) and used in prediction based on similarities in
sequence and sequence-derived features (Gront et al., 2011;
Kalev & Habeck, 2011; Santos et al., 2015; De Oliveira et al.,
2015; Trevizani et al., 2017; Wang et al., 2019). Generative
probabilistic models of protein backbone angles (Hamel-
ryck et al., 2006; Boomsma et al., 2008; Bhattacharya et al.,
2016; Edgoose et al., 1998; Li et al., 2008; Lennox et al.,
2010) offer an alternative way to construct fragment libraries
and aim to represent the associated epistemic and aleatory
uncertainty. In this case, epistemic uncertainty is due to
experimental errors from the determination of protein struc-
tures, while aleatory or inherent uncertainty is due to the
dynamic nature, or flexibility, of proteins (Best, 2017).

Here, we present BIFROST - Bayesian Inference for FRag-
ments Of protein STructures - a deep, generative, proba-
bilistic model of protein backbone angles that solely uses
the amino acid sequence as input. BIFROST is based on
an adaptation of the Deep Markov Model (DMM) archi-
tecture (Krishnan et al., 2017) and represents the angular
variables (φ and ψ) in a principled way using directional
statistics (Mardia & Jupp, 2008). Finally, BIFROST makes
it possible to evaluate the probability of a backbone confor-
mation given an amino acid sequence, which is important
for applications such as sampling the conformational space
of proteins with correct statistical weights in equilibrium
simulations (Boomsma et al., 2014).

2. Background and related work
Probabilistic, generative models of local protein struc-
ture Most generative, probabilistic models of local protein
structure are Hidden Markov Models (HMMs) that repre-
sent structure and sequence based on the assumption of a
Markovian structure (Hamelryck et al., 2012). The first such
models did not include the amino acid sequence (Edgoose
et al., 1998), discretised the angular variables (Bystroff
et al., 2000), or used continuous, but lossy representations
(Camproux et al., 1999; Hamelryck et al., 2006), making
sampling of conformations with atomic detail problematic.
These early models are thus probabilistic but only approx-
imately ”generative” at best. TorusDBN (Boomsma et al.,
2008) was the first joint model of backbone angles and
sequence that properly accounted for the continuous and
angular nature of the data. Others introduced richer proba-
bilistic models of local protein structure including Dirichlet
Process mixtures of HMMs (DPM-HMMs) Lennox et al.
(2010) and Conditional Random Fields (CRFs) (Zhao et al.,

2010; 2008). As far as we know, BIFROST is the first deep
generative model of local protein structure that aims to quan-
tify the associated aleatory and epistemic uncertainty using
an (approximate) Bayesian posterior.

Deep Markov Models The DMM, introduced in (Krishnan
et al., 2017), is a generalisation of the variational autoen-
coder (VAE) (Kingma & Welling, 2014) for sequence or
time series data. Related stochastic sequential neural mod-
els were reported by Fraccaro et al. (2016) and Chung et al.
(2015). Published applications of DMMs include natural
language processing tasks (Khurana et al., 2020), inference
of time series data (Zhi-Xuan et al., 2020), and human pose
forecasting (Toyer et al., 2017). Our application of the
DMM and the modifications made to the standard model
will be described in section 3.3.

3. Methods
3.1. Data set

BIFROST was trained on a data set of fragments derived
from a set of 3733 proteins from the cullpdb data set (Wang
& Dunbrack, 2005). Quality thresholds were (i) resolution
< 1.6Å, (ii) R-factor < 0.25, and (iii) a sequence iden-
tity cutoff of 20%. For the purpose of reliable evaluation,
sequences with > 20% identity to CASP13 targets were
removed from the dataset.

Fragments containing angle-pairs in disallowed regions of
the Ramachandran plot (Ramachandran et al., 1963) were
removed using the Ramalyze function of the crystallography
software PHENIX (Liebschner et al., 2019). The resulting
data set consisted of ∼ 186000 9-mer fragments. Prior to
training, the data was randomly split into train, test, and
validation sets with a 60/20/20% ratio.

3.2. Framework

The presented model was implemented in the deep proba-
bilistic programming language Pyro, version 1.3.0 (Bing-
ham et al., 2019) and Pytorch version 1.4.0 (Paszke et al.,
2019). Training and testing were carried out on a machine
equipped with an Intel Xeon CPU E5-2630 and Tesla M10
GPU. The model trains on a single GPU and converges after
150 epochs for a total training time of approximately 34
hours.

3.3. Model

BIFROST consists of a DMM (Krishnan et al., 2017) with
an architecture similar to an Input-Output HMM (IO-HMM)
(Bengio & Frasconi, 1995). The model employs the Marko-
vian structure of an HMM, but with continuous, as opposed
to discrete, latent states (z) and with transition and emission
neural networks instead of transition and emission matrices.
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Consequently, the latent states are iteratively transformed
using the transition neural network, such that the value of
the current latent state depends on the previous state and the
(processed) amino acid information at that position (figure
2).

Observed angles (φ and ψ) are generated from the latent
state sequence by applying an emitter neural network at
each position (figure 2). Since the backbone angle ω is
most often narrowly distributed around 180◦, this degree of
freedom is not included in the current version of BIFROST.
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Figure 2. The BIFROST model. Grey nodes are latent random
variables, white circular nodes are observed variables, white rectan-
gular nodes represent hidden states from a bidirectional Recurrent
Neural Network (RNN) H , and black squares represent neural
networks. E and T denote the emitter and the transition network,
respectively.

The structure of the model is shown in figure 2. For no-
tational simplicity, the sequence of φ and ψ pairs will be
denoted by x. The joint distribution of the latent variable z
and the angles x conditioned on the amino acid sequence a
with length N of the graphical model in figure 2 factorises
as

p(z,x|a) =
N∏
n=1

p(zn|zn−1,hn(a))p(xn|zn) (1)

where hn(a) is the deterministic hidden state generated at
position n by a bidirectional RNN H with parameters θH
running across the amino acid sequence. The bidirectional
RNN incorporates information from amino acids upstream
and downstream of position n. The initial latent state z0 is
treated as a trainable parameter and is thus shared for all
sequences.

The transition densities are given by a multivariate Gaussian
distribution,

p(zn|zn−1,hn(a)) =
N (µT (zn−1,hn(a)),ΣT (zn−1,hn(a)))

(2)

where the mean vector (µT ) and the (diagonal) covariance
matrix (ΣT ) are given by a neural network T parameterised
by θT .

The emission densities are given by a bivariate periodic
student-T distribution (Pewsey et al., 2007) (section 3.5)
such that

p(xn|zn) =
T (xn|νE(zn),µE(zn),ΣE(zn))

(3)

where the single, shared degree of freedom (νE), the vector
of two means (µE), and the 2×2 diagonal covariance matrix
(ΣE) of the distribution are given by a neural network E
parameterised by θE .

z0 C z1 C z2 ... C zN

g1 g2 ... gN

a1 φ1 ψ1 a2 φ2 ψ2 aN φN ψN

Figure 3. Variational distribution for approximating the posterior.
Grey nodes are latent random variables, white circular nodes are
observed variables, white rectangular nodes represent hidden states
from a bidirectional RNN G, while black squares represent neural
networks. C denotes the combiner network.

3.4. Estimation

In order to perform inference of the intractable posterior, we
introduce a variational distribution or guide q (Kingma &
Welling, 2019) (figure 3), which makes use of a combiner
neural network C parameterised by ζC ,

q(zn|zn−1,a,x) =
N (µC(zn−1,gn(a,x)),ΣC(zn−1,gn(a,x)))

(4)

where gn(a,x) is the deterministic hidden state generated
at position n by a bidirectional RNN G with parameters ζG
running across the amino acid sequence a and the angles x.

For the parameters of the neural networks
(ζC , ζG,θT ,θE ,θH ), point estimates are obtained
using Stochastic Variational Inference (SVI), which
optimises the Evidence Lower Bound (ELBO) using
stochastic gradient descent (SGD) (Kingma & Welling,
2014; 2019). The ELBO variational objective is given by

Lθ,ζ(x) =
Eqζ(z|x,a) [log pθ(z,x|a)− log qζ(z|x,a)]

(5)

where ζ = (ζC , ζG) and θ = (z0,θT ,θE ,θH) are the
parameters of the guide and the model, respectively.
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3.5. Periodic student T distribution

As angle-pairs are periodic values, i.e. distributed on a torus
(Boomsma et al., 2008), they need to be modelled by an
appropriate periodic distribution. Traditionally, angles are
assumed distributed according to the von Mises distribution,
which is defined by a mean that can be any real number and a
concentration parameter, which can be any positive number.
SVI showed poor performance when the von Mises distribu-
tion was used. Here, we circumvent this by representing the
likelihood of the angles by a student T distribution that is
wrapped around a circle (Pewsey et al., 2007). This allows
for appropriate modelling of the periodicity of the angles,
while being more robust with regards to outlier issues than
the von Mises distribution due to the wider tails of the T
distribution. It should be noted as well that Pewsey et al.
(2007) showed that the wrapped student T distribution can
approximate the von Mises distribution closely.

3.6. Neural network architecture overview

The overall architecture is based on the originally proposed
DMM (Krishnan et al., 2017) with modifications. The main
difference is the addition of an RNN H in the model that
processes the amino acid sequence a, thus providing explicit
conditioning on the amino acid sequence. A similar archi-
tecture was used by Fraccaro et al. (2016) for time series. In
the guide, a second RNN G is used that processes the angles
and the amino acid sequence during training. The initial
values for both RNNs are treated as trainable parameters.
In addition to the RNNs, the model contains an emitter net-
work E and a transition network T , while the guide relies
on a combiner network C.

Emitter architecture The emitter networkE parameterises
the emission probabilities as stated in equation 3. E is a feed-
forward neural network containing two initial layers that
branch into three. One output branch is a single layer that
outputs the degree of freedom of the Student T distribution,
which is shared between the two angles. The other two
branches output a mean µ and a standard deviation σ for φ
and ψ, respectively. Each hidden layer of the neural network
contained 200 neurons with rectified linear unit (ReLU)
activation. Output layers for µ values had no activation, as
the periodic distribution automatically transforms values to
a range between −π and π. Output layers for σ and degrees
of freedom ν used softplus activation to ensure positive, real
numbered values. The architecture ofE is depicted in figure
4.

Transition and combiner architecture The transition net-
work T and the combiner network C specify the transition
densities from the previous to the current latent state of the
model (equation 2) and the guide (equation 4), respectively.
In the original DMM (Krishnan et al., 2017), C was inspired
by the Gated Recurrent Unit (GRU) architecture (Cho et al.,

zn

µφn

σφn

µψn

σψn

νn

Figure 4. Architecture of the emitter neural network, E. Black
rectangles represent ReLU-activated fully connected layers.

2014), while T was a simple feed forward network. Here,
both C and T were based on GRU cells to allow for better
horizontal information flow (figure 5).

zn−1 R X

X
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S S 1− X
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Figure 5. Architecture of the transition T and combiner C neural
networks. Black squares represent single neural network layers
activated by a ReLU (R), sigmoid (S), tanh (T), softplus (SP) or
no activation. White squares represent element-wise mathematical
operations. Gray squares represent tensor concatenation. Note that
the network takes as input either hn or gn obtained from the RNN
in the model or the guide, respectively.

The total number of parameters in BIFROST are shown in
table 1.

3.7. Hyperparameter optimization

A simple hyperparameter search was performed with the
test ELBO as the selection criterion (data not shown). The
final model was trained with a learning rate of 0.0003 with
a scheduler reducing the learning rate by 90% when no im-
provement was seen for 10 epochs. Minibatch size was 200.
The Adam optimiser was used with a β1 and β2 of 0.96 and
0.999 respectively. The latent space dimensionality was 40.
All hidden activations (if not specified above) were ReLU
activations. We employed norm scaling of the gradient to a
norm of 10.0. Finally, early stopping was employed with a
patience of 50 epochs.
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Neural networks Z0

E T C H G p q
24 805 142 280 142 280 89 200 90 000 40 40

Total parameters: 488 645

Table 1. Number of parameters in BIFROST. E: Emitter, T: Transi-
tion, C: Combiner, H: model RNN, G: guide RNN, p: model, q:
guide

3.8. Sampling from the model

The BIFROST model (figure 2) is designed with explicit
conditioning on amino acid sequences allowing a simple
and efficient ancestral sampling approach that eliminates
the need for using the guide for predictions. Thus, the guide
is used solely for the purpose of model estimation and is
discarded upon sampling.

3.9. Fragment library generation and benchmarking

Fragment libraries are a collection of fragments, consisting
of typically 3 or 9 amino acids with known backbone angles.
Here, we focus on fragments of nine amino acids. For each
fragment in a protein, 200 possible backbone conformations
are sampled from BIFROST resulting in a set of (L− 8)×
200 fragment candidates, where L is the number of amino
acids in the protein. These candidates are compared to
the observed fragment by calculating the angular root mean
square deviation (RMSD) between the corresponding angles
as proposed in Boomsma et al. (2008). The choice of 9-mer
fragments and the 200 samples per fragment were made to
emulate the default behavior of the Rosetta fragment picker
(see below), for fair comparison.

The aggregated quality of fragment libraries are generally
represented by two metrics; precision and coverage. Preci-
sion is defined as the fraction of candidates with an RMSD
to the observed below a certain threshold, whereas coverage
is the fraction of positions covered by at least one candidate
with an RMSD below a certain threshold. Evaluating the
precision and coverage at increasing thresholds yields two
curves, and the quality of the fragment library is quantified
by the area under these two curves.

BIFROST was benchmarked against Rosetta’s fragment
picker (Gront et al., 2011) using the precision and coverage
metrics. The fragment picker was run using default parame-
ters, picking 200 fragments per position. Secondary struc-
ture predictions were performed using SAM-T08 (Karplus,
2009), PSIPRED (Jones, 1999) and Jufo (Leman et al.,
2013). Sequences that were homologous to the targets were
excluded (–nohoms flag).

Fragment libraries were generated for all available regu-
lar (denoted ”T”) targets from the latest installment of the

bi-annual protein structure prediction competition Critical
Assessment of Techniques for Protein Structure Prediction
(CASP13).

3.10. Runtime comparison

In order to compare the runtime of BIFROST to that of
the fragment picker, nine proteins of varying lengths were
selected. Both tools generated 200 samples per fragment.
The experiment was run on the same 32-core machine for
both the fragment picker and BIFROST.

4. Results
To show that the model is able to capture general protein
backbone behavior, angles were generated conditioned on
the sequences of 5000 previously unseen fragments and
compared to the observed angles. The model was able to
recreate the observed Ramachandran plots with minimal
added noise (figure 6).

Figure 6. Observed and modelled aggregated Ramachandran plots

While most amino acids show angle distributions similar to
the background in figure 6, glycine and proline are excep-
tions due to the nature of their side chains. The side chain
of glycine is a single hydrogen atom, allowing the backbone
to be exceptionally flexible, while the side chain of proline
is covalently linked to the backbone restraining the confor-
mational space. The modelled distribution of angles for
these two unique cases, along with leucine to represent the
general case, show that the model is able to capture specific
amino acid properties (figure 7).

The left side of figure 8 shows a thin, smoothed coil rep-
resentation of 100 samples from BIFROST conditioned on
example 9-mer fragments that were observed to be either
α-helix, β-strand, or coiled. The right side shows distri-
butions of backbone RMSDs of 5000 sampled fragments
to the observed structure from BIFROST and as picked by
Rosetta’s fragment picker.

The RMSDs were generally distributed towards 0Å for the
α-helix case, showcasing BIFROSTs ability to predict this
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Figure 7. Amino acid specific Ramachandran plots

well defined secondary structure element. The model has
more difficulty modelling β-strands and coils. However,
the distributions of the RMSDs are nearly identical to those
produced by the fragment picker. For coil fragments, the
RMSDs were distributed around 3Å reflecting the inherent
variability of those fragments.

Figure 8. Left: 100 samples of backbone dihedral angles (blue)
superimposed on the observed structures (yellow). For clarity,
the backbones are represented as thin, smoothed coils instead of
traditional cartoon representations. Right: Aggregated RMSDs
of BIFROST-sampled conformations and conformations picked
by Rosetta’s fragment picker for sequences observed as α-helix,
β-strand, and coil respectively.

BIFROST was benchmarked against Rosetta’s fragment
picker (Gront et al., 2011) on all publicly available CASP13
regular targets. BIFROST generated fragment libraries with
comparable precision and coverage to the fragment picker
(figure 9).

Figure 9. Comparison of fragment libraries generated by
BIFROST, relying on just the amino acid sequences, against
Rosetta’s fragment picker, which uses external information and
relies on ensemble predictions of secondary structure.

Finally, BIFROST enables efficient sampling of fragment
libraries. The runtime of BIFROST and the fragment picker
are compared in figure 10 on a set of nine proteins of varying
lengths. Both runtimes roughly scale linearly with protein
length, but BIFROST has a smaller constant term than the
fragment picker.

Figure 10. Runtime comparison between Rosetta’s fragment picker
and BIFROST on a set of nine proteins of varying lengths.

5. Discussion
BIFROST is a deep, generative model of local protein struc-
ture conditioned on sequence that provides a probabilistic
approach to generating fragment libraries.

The quality of the generated fragment libraries is on par
with Rosetta’s fragment picker, despite using much less
information, such as an ensemble of secondary structure
predictors. Due to the probabilistic nature of BIFROST,
distributions tend to be slightly wider than those resulting
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from picking structural fragments from the PDB based on
sequence similarity. This wider distribution plausibly re-
flects the dynamic nature of protein structure, which is not
captured in the experimental data provided by static X-ray
structures.

The model was estimated using SVI, relying on the ELBO
variational objective. As the ELBO provides a lower bound
on the log evidence (Kingma & Welling, 2014), we can
evaluate the probability of a specific local structure given
the sequence, simply by evaluating the ELBO. Evaluating
the probability of fragments is crucial for correct sampling
of the conformational space, for example in the case of
equilibrium simulations of protein dynamics (Boomsma
et al., 2014). The probabilities assigned by BIFROST can
be used to decide how often a fragment should be sampled
in the folding process. In contrast, existing methods do not
provide an explicit measure of fragment confidence.

In this paper the focus was kept on fragments of nine
residues for ease of comparison to the fragment picker. How-
ever, the DMM architecture of BIFROST allows generation
of fragments of arbitrary length but with an observed drop-
off in performance as the length of fragments are increased
(data not shown).

Existing methods rely heavily on the availability of multiple
sequence alignments (MSA) and other information, such as
secondary structure predictors. As MSAs are not available
for orphan proteins or synthetic proteins, the need for pure
sequence based models is evident.
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